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Deep Residual Inception Encoder–Decoder
Network for Medical Imaging Synthesis

Fei Gao , Teresa Wu , Xianghua Chu , Hyunsoo Yoon , Yanzhe Xu , and Bhavika Patel

Abstract—Image synthesis is a novel solution in preci-
sion medicine for scenarios where important medical imag-
ing is not otherwise available. The convolutional neural
network (CNN) is an ideal model for this task because of
its powerful learning capabilities through the large num-
ber of layers and trainable parameters. In this research, we
propose a new architecture of residual inception encoder–
decoder neural network (RIED-Net) to learn the nonlinear
mapping between the input images and targeting output
images. To evaluate the validity of the proposed approach,
it is compared with two models from the literature: syn-
thetic CT deep convolutional neural network (sCT-DCNN)
and shallow CNN, using both an institutional mammogram
dataset from Mayo Clinic Arizona and a public neuroimaging
dataset from the Alzheimer’s Disease Neuroimaging Initia-
tive. Experimental results show that the proposed RIED-Net
outperforms the two models on both datasets significantly
in terms of structural similarity index, mean absolute per-
cent error, and peak signal-to-noise ratio.

Index Terms—Deep learning, image synthesis, inception,
medical imaging and residual net.

I. INTRODUCTION

DURING the last decade, individualized precision medicine
has emerged as a novel paradigm for diagnosis and treat-

ment in healthcare. One cornerstone for precision medicine is
medical imaging. Tremendous efforts have been dedicated to
medical imaging research which can be categorized in four
generalized areas: imaging-based classification [1]–[7], object
detection [8]–[10], segmentation [11]–[14] and imaging syn-
thesis [15]–[18]. The emerging convolutional neural network
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(CNN) has been successfully introduced into all these areas with
different focuses [1]. An example of imaging detection and clas-
sification working on the object of interest is tumor detection
and classification. Specifically, classification is to categorize the
tumor, for example, as benign vs. malignant, in which the entire
image or the extracted region of interest (ROI) is fed into a CNN,
with one or more probabilities or class labels as the outputs. As
early as 1996, a 4-layer CNN was implemented to classify ROIs
from mammograms as either biopsy-proven masses or normal
tissues [2]. Since then, different CNNs have been introduced for
various classification tasks including but not limited to breast
lesions [3], [4], lung patterns [5], skin lesions [6] or pulmonary
peri-fissural nodules [7]. The task of detection is to derive an
envelope box to enclose the given object. In the area of de-
tection, bounding boxes or patches centered on the candidate
objects are identified and CNN-based detectors are trained to
find boxes that truly contain desired objects. Applications have
included detecting colonic polyps on CT images [8], cerebral
microbleeds from MRI scans [9], and nuclei in histopathological
images [10]. Of note both classification and detection patterns
are interested in the objects instead of pixel-based information,
thus, the requirement of pixel-level details can be relaxed.

There is another category of problems known as dense pre-
diction. It requires pixel-level specifics and focuses of imaging
segmentation and synthesis. In segmentation, a probability map
that quantifies the likelihood of each pixel being within the imag-
ing object (e.g., tumor) is generated. Successful implementa-
tions have been reported in brain tumor/structures segmentation
[11]–[13], epithelial tissue segmentation in prostatectomy [14],
and others. In [11], a four-layer CNN is designed to take T1, T2
Magnetic Resonance images (MRI) and Fractional Anisotropy
(FA) image as inputs and outputs are the segmentation maps
for three types of tissues, namely white matter, gray matter, and
cerebrospinal fluid. To do so, a local response normalization
layer is implemented between the convolutional layer and the
final fully connected layer to enforce competitions between fea-
tures at the same spatial location across different feature maps
resulting much improved segmentations. In [12], a fully con-
volutional neural network (FCNN) collaborated with random
fields in a unified framework is proposed to segment brain tu-
mor regions in MRI images, while in [14], the same FCNN is
introduced in the task of epithelial tissue segmentation. In [13],
a two-pathway CNN architecture is proposed to harvest both
local features (longer pathway) and global contextual features
(shorter pathway) simultaneously and improve the brain tumor
segmentation. As research on exploring CNN on segmentation
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progresses, a notable new architecture with “U” shape (U-Net
[19]) has emerged. The novel design of a contracting path to
capture context and a symmetric expanding path to enable pre-
cise localization improves the segmentation performance signif-
icantly. Following the success, U-Net and its variants are studied
in a number of medical imaging segmentation problems. For
instance, it is implemented in joint craniomaxillofacial bone
segmentation and landmark digitization [20]. A 3D U-Net is de-
signed in volumetric imaging segmentation for Xenopus kidney
[21]. V-Net [22], an extension of U-Nets with added shortcut
connections between different layers, is developed to segment
prostate within 3D volumetric images.

Imaging synthesis tackles a different dense prediction prob-
lem. It is to discover the pixel-wise nonlinear associations be-
tween the input images and the output images. Imaging synthesis
has great potentials in medical applications, especially in sce-
narios where some imaging modalities may be of limited access
or missing due to various reasons such as cost, radiation or uti-
lization of intravenous contrast [15]. As a new field, to the best
of our knowledge, the very first published literature may be from
Li [16]. To test the innovative idea, a 4-layer shallow network
is developed to map the Fludeoxyglucose Positron Emission
Tomography (FDG-PET) images from MRI. Improved clinical
diagnostic accuracy is observed after using the combination of
MRI and synthetic FDG-PET for Alzheimer’s disease. In [17], a
4-layer CNN is designed to reconstruct dual-energy subtraction
soft-tissue chest images from multi-scale gradient imaging of
the original chest radiograph image. Another interesting effort is
related to breast cancer research. Full Field Digital Mammogra-
phy (FFDM) is the mainstay in breast cancer screening program
but is known to suffer from diagnostic accuracy. Contrast En-
hanced Digital Mammography (CEDM) is utilized iodinated IV
contrast plus mammography (provides a low energy imaging
comparable to FFDM and recombined subtracted imaging by
taking advantage of Kedge of iodine digitally acquired from
high-energy images [18]). While promising, as a new modal-
ity, CEDM is not yet widely available in many medical centers
worldwide. To tackle this accessibility issue, a Shallow-Deep
CNN is proposed in [23] to render synthetic recombined images
from FFDM thus significantly improving breast cancer detection
compared with the methods using FFDM alone. In this research,
a 4-layer CNN (Shallow-CNN) is implemented to map the low
energy (FFDM) images to the recombined images [23]. The
research reviewed above is taking the proof-of-the-concept ap-
proach exploring the applicability of 4-layer network in image
synthesis. The aforementioned 4-layer network is shallow and
simpler compared to the deep networks used in imaging classi-
fication, detection, and segmentation. Therefore, most research
only handles the images by taking small patches from the ROIs.
For example, in [16], [23], the ROIs are smaller than 400 × 600
pixels and the size of training patches is 15 × 15 pixels. We con-
tend this approach may work well for smaller images or under
the condition where an ROI is available. For the later cases, the
involvement from domain experts (e.g., fellowship-trained and
board-certified radiologists) is required. An ideal solution for
synthetic imaging is a deep CNN being capable of handling the
whole image. A shallow network with limited learning power
may suffer, while a deep network may be the promising network

to explore [24]–[26]. This is because a deep network has many
more layers and trainable parameters, is better equipped to learn
the complicated associations between input and output images
at the whole image scale.

Given imaging segmentation and synthesis share the common
interest of pixel level details [27], [28], the satisfying perfor-
mance of U-Net in segmentation makes it a potential approach
for synthetic imaging research. There is an initial attempt in this
direction. In [27], a 27-layer sCT-DCNN borrowing the ‘copy
and crop’ idea from U-Net is implemented to generate synthetic
CT images from MRI images of same subjects. Significantly im-
proved synthetic results are achieved compared to the traditional
atlas-based method. It is worth mentioning that in [27] as well
as other segmentation architectures, max pooling is extensively
used to reduce feature maps’ resolution by representing each
grid (e.g., a group of 4 neighboring pixels) with a single value
(maximum value) in its subsequent feature maps. This maxi-
mization operation may keep the pixel-level specifics to some
extent. In the applications where the input images and output
images are of similar resolutions, the performance of approach
in [27] may not be guaranteed.

In this research, we propose a new deep CNN, named Resid-
ual Inception Encoder-Decoder Net (RIED-Net). Since image
synthesis and image segmentation all address the pixel level
prediction problem, it is a good starting point to adopt exist-
ing state-of-art segmentation network structure such as U-Net
[19] in image synthesis problem directly. However, it may lose
some pixel level information because of the max-pooling and
un-pooling layers used. Noticing that the pixel level information
is very important in image synthesis tasks, we implement con-
volution and deconvolution layers in replacing the max-pooling
and un-pooling respectively. However, the additional layers may
lead to issues of gradient vanishing or degradation, which has
long been criticized from very deep networks [24], [29]. Resid-
ual short-cut [24] has been proposed as a solution to this prob-
lem; but the existing residual shortcut can be only implemented
between layers of the same size and is not applicable in the U-
Net architecture. To address this issue, we propose the residual
inception block, in which one additional inception path with
1 × 1 convolution is adapted for feature map resizing. So the
whole RIED-Net takes the advantage of U-Net design and is
improved by reserving more pixel level information; it is also
robust to overfitting and gradient vanishing problem because of
the residual inception block introduced.

The remaining of this paper is organized as follows.
Section II provides a detailed description of the background
for this research. Details about the proposed architecture are
demonstrated in Section III. Experiments and discussions are
presented in Section IV. Finally, Section V concludes this paper.

II. BACKGROUND

A. U-Net and Dense Prediction Problem

CNNs have been successfully implemented to tackle differ-
ent machine learning and computer vision problems. Improved
performance is achieved in imaging classification and object
detection tasks [30]–[32]. Researchers further extend this suc-
cess to imaging segmentation, a dense prediction problem with
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U-Net [19] being a representative model. U-Net and its variants
have been applied to various segmentation problems such as
joint craniomaxillofacial bone segmentation and landmark dig-
itization [20], volumetric imaging segmentation for Xenopus
kidney [21] and segment prostate from 3D volumetric images
[22]. Most recently, U-Net is introduced to imaging synthesis,
an example is sCT-DCNN [27].

Within U-Net, max pooling is a common approach to reduce
the spatial resolution and increase the receptive fields in the CNN
models. During the max pooling operation, the dimension of in-
put representation is reduced by replacing each n × n matrix (n
is the pooling size) with one single value (e.g., maximum value)
as in the output representation map. After several iterations of
pooling operations, the high dimensional input image is rep-
resented by a set of feature maps of reduced spatial resolution.
Max pooling may be desirable for imaging classification and de-
tection problems where the outcome is an abstracted prediction
of the interested object as a whole. However, dense prediction
problem differs as it requires preserving the pixel-level details
[26]. As a result, max pooling used in a dense prediction problem
may face the challenges of losing pixel information. Recogniz-
ing this problem, fully convolutional networks (FCNs) [33] are
proposed to enlarge the feature maps through bilinear interpola-
tion, and an unpooling layer is introduced in [34]. Specifically,
when doing the max pooling operation within a grid, the lo-
cations of pixels with maximum intensity are recorded. In the
corresponding unpooling layer, an output feature map is en-
larged from the input map, the recorded position within output
feature map is filled with corresponding value from input map,
and the rest positions are placed with zeros (zero padding). As
pointed out by [21], [26], unpooling suffers from the loss of in-
formation due to the excessive use of dimension reduction and
zero paddings. Another potential issue with the max pooling
and unpooling approach is, the max pooling operation keeps the
location of the pixels with maximum contrast compared with its
neighbors and then positions the pixel back to the same loca-
tion in the corresponding unpooling operation. The underlying
assumption is that the pixels from the input image with high
contrast remain at the same positions throughout different lay-
ered feature maps and the output image. This may not be true
in image synthesis where the input image and output image are
from two different modalities, i.e., same region in location from
two images may show different appearances [35]. One possible
solution is incorporating the use of convolutional and decon-
volutional layers with the learnable filters to better record the
compression information during the encoding process and de-
compression information during the decoding process. This will
be reviewed in the next subsection.

B. Convolutional and Deconvolutional Layers

The convolutional layer is the core building block of a CNN.
A set of learnable filters are included in the convolutional layer
to compute the convolutional values as the filters slide through
all the pixels. Often, the filters slide a single pixel per step
(stride = 1) to keep spatial resolution of input and output fea-
ture the same [30], [36]. By setting different strides, the filter

Fig. 1. Illustration of convolution and deconvolution operations (∗: con-
volution operation; ×: multiplication of a scalar (e.g., D3′) and a matrix
(e.g., W′)).

can jump several pixels and obtain an output feature map of
reduced spatial resolution, such design is implemented in the
networks proposed in [18], [37]. In parallel, the deconvolution
layer associates one single input with multiple outputs and is
used as the reserve operation of convolution layer to enlarge and
densify the outputs [34].

For illustration purpose, an example of convolution and de-
convolution is shown in Fig. 1. Using convolution operation,
the value of each pixel (e.g., C4′) in the output map is equal
to the convolution of its corresponding area (C) in the input
map and a learnable filter (W). As a result, the value of each
pixel in the output map is a weighted summation of all corre-
sponding input pixels. In deconvolution operation, the values
of an output region equal to the pairwise multiplication of its
corresponding pixel (D3′) in input map with the filter (W′). By
learning the optimal filters (W and W′) while training the net-
work model, the pixel-information is well preserved in encoding
and decoding process. But, as the network is getting deeper with
added convolution and deconvolution layers, gradient vanishing
or degradation issue may emerge. To address these issues, we
propose a residual inception structure, it will be discussed in the
following section.

C. Residual Short-Cut and Inception Block

Deep networks integrate multiple level features and classi-
fiers in an end-to-end multilayer fashion, and the levels of fea-
tures are enriched by the number of stacked layers (depth) [36].
The stacked convolutional layers tend to underperform its shal-
lower counterparts due to the problems such as gradient vanish-
ing/exploding, as millions of parameters in deep networks are
updated based on a single value of gradient. The early layers
tend to be less sensitive to that gradient tends to get smaller
when it moves backward through the layers [24]. This problem
is even worse for the dense prediction problem, as the gradi-
ent is calculated by averaging prediction errors on all pixels,
thus making it less contrasting and even less sensitive to early
layers.

To address the gradient vanishing issue in imaging classifica-
tion, residual shortcut connection is first introduced in [24]. In
residual shortcut block, formally, let H(x) denotes the desired
non-linear mapping between the input and output of the resid-
ual block, instead of directly estimating H, the residual map
F(x) = H(x) – x is estimated by the learnable filters within the
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2 residual blocks, and the original mapping can be recast into
F(x) + x. Different experiments have been conducted and jus-
tified so that the residual mapping is much easier to optimize,
resulting a more accurate results. Residual shortcut design also
achieves extended success in dense predictions such as segmen-
tation [22], [37]. However, in these models, the residual shortcut
is implemented between arbitrary layers and is used as a feature
transducer. These models are not designed following the original
purpose of short-cut design, which enables training deep neu-
ral networks easier and more accurate by simply stacking the
short cut blocks. Moreover, implementation of residual short
cut blocks requires the size of input and output feature maps
to be equivalent to conduct pixel-wised summation. This is not
applicable if we still want to take advantage of novel design of
U-Net, as the decoding layers are doubled with feature maps
copied from corresponding encoding layers.

The concept of inception is first introduced in [31] and leads
to several similar variants [38]–[40]. The power and novelty of
inception block lies in its multiple inception paths; with these
paths, feature maps of different scales and levels are derived
and combined to approximate more complicated feature maps,
which is otherwise achieved through larger filters and more
layers. In this way, the training efficiency and accuracy are
improved. Since multiple inception paths of different scales
are needed and the outputs feature maps from different incep-
tion paths are concatenated together, additional parameters are
needed within each inception block.

III. RIED-NET

In image synthesis problem, assuming input image I ∈ Rm×n

and O ∈ Rm×n is the corresponding output image, the relation-
ship between them can be formulated as

O = S (I) (1)

where S : Rm×n → Rm×n denotes the complex non-linear
mapping between the input and output images. The image syn-
thesis problem is to make an estimation of function S:

arg min
S

‖S (I) − O1‖ (2)

In this research, we propose the Residual Inception Encoder-
Decoder Neural Network (RIED-Net) to estimate the desired S,
and we use �1-norm to measure the difference between input and
output images. The overall architecture of RIED-Net is shown
in Fig. 2. It consists of an encoding path (left side) to compress
essential information in the extracted patches from low-level
to high-level and a decoding path (right side) to reconstruct the
final outputs from the compressed feature maps. The ‘copy and
crop’ idea and a symmetric expanding path are added to capture
the context features from encoding path to decoding path. Con-
volutional and deconvolutional layers are introduced to replace
the max-pooling and un-pooling layers as learnable filters so the
pixel information can be traced in both the encoding procedure
to reduce the feature maps’ spatial resolution and the decoding
procedure to increase the spatial resolution. In addition, the
inception residual block is proposed to address issues raised
from networks getting deeper and ensure a better accuracy.

Fig. 2. Schemas for original convolution block and proposed residual
inception (Note that in traditional convolution block, the input x and
output H (x) has different number of channels which makes the directly
residual shortcut inapplicable).

The RIED has 9 residual inception blocks, with 5 blocks in
the encoding path and the remaining 4 in the decoding path.
The model takes gray scale images of size 128 × 128 × 1, and
outputs the predicted mask of the same size. Within each block,
there is a main path of 3 convolution layers and a residual incep-
tion path from the first layer to the last layer, on which a 1 × 1
convolutional layer is implemented. The channel number can
be found on the top of each layer in Fig.2. Between each block
in the encoding path, a convolutional layer with stride equal to
2 is implemented to reduce the resolution by half; between each
block in the decoding path a deconvolution layer with stride
equal to 2 is implemented to double the resolution. There are
a total of 12,247,233 trainable parameters within the proposed
model. Among the 12,247,233 parameters, 25% (3,052,960) are
within the convolution and deconvolution layers for resolution
change while reserving pixel information; 3% (348,192) are
within the residual inception shortcut; the remaining 72%
parameters are within the main encoding and decoding path for
feature generation.

The residual inception blocks take a new architecture (Fig. 3).
It consists of one traditional convolutional path with two 3 ×
3 convolutional layers as sCT-DCNN or U-Net, and a unique
residual inception short-cut path with a 1 × 1 convolutional
layer. The 1 × 1 convolutional layer is implemented to increase
(during encoding) or decrease (during decoding) the filter depth
and project the input feature map into the same space as output
to ensure the pixel-wise summation.

In the traditional 2-layer convolution block, given the input
image/feature map x, we assume the desired mapping fitted
by stacked nonlinear layers fitting is H(x). After introducing
a residual inception shortcut with one single convolution layer,
H(x) can be estimated as F (x) + G(x) in the proposed residual
inception block. In this way, H(x) is estimated simultaneously
using features from 2 different levels, which will improve the
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Fig. 3. Architecture of RIED-Net (Each brown arrow represents a 3 × 3 convolutional operation with a rectified linear unit (ReLu) as the activation
function (Conv 3 × 3, ReLu). Each red arrow denotes a 3 × 3 convolutional operation (stride = 2, with a ReLu as the activation function), each
orange arrow denotes a 1 × 1 convolutional operation (with a ReLu as the activation function) and each green arrow denotes a 3 × 3 deconvolutional
operation (stride = 2, with a ReLu as the activation function). Each black dotted arrow denotes a copying operation. The final purple arrow denotes
the final 1 × 1 convolutional operation that generates the output of synthetic image. The depth (number of channels) of the feature map from each
convolutional layer is provided at the bottom of each box. Examples of feature maps from different levels are also displayed. There are 9 residual
inception blocks (block 1 ∼ 9) in RIED-Net).

accuracy as more features are introduced [31]. Besides, G(x)
can be regarded as a projection/estimation of x [39], following
the same logic in [24], [38], the residual mapping F (x) and
projection G(x) are much easier to optimize, resulting in more
accurate results than the original mapping H(x).

Our intention to adopt the inception path is different from the
original design. In this study, we do not expect the convolution
layers along different reception paths to learn the complicated
mapping and combine them together. Here we implement ONE
single inception path with a projection layer (1 × 1 convolution
layer) that changes the feature map’s channel size to enable the
pixel-wised summation required by residual learning. Second,
the residual inception block requires much less parameters com-
pared with inception block. In our residual inception block, only
one cheapest 1 × 1 convolutional layer is added, and the outputs
are combined through pixel-wised summation, which is free of
parameters. While in inception block, many more parameters are
needed because 1) multiple inception paths of different feature
sizes are needed, and 2) feature maps from different inception
paths are concatenated together for the following layers. Our
proposed residual inception block addresses the problem that
the input feature maps have different channels from the output
feature maps. It is also simpler and easier to deploy than other
state-of-art inception designs.

IV. EXPERIMENTS

In this section, we conduct two experiments to validate the
performance of RIED-Net using digital mammography dataset
from Mayo Clinic and a public neuroimaging dataset from
Alzheimer’s Disease Neuroimaging Initiative (ADNI) [41].
Three commonly used metrics, mean absolute error (MAE),
structural similarity index (SSIM) [42], and peak signal-to-noise
ratio (PSNR) [43] from literature that quantify the similarity
between the ground truth image and the synthetic image are
employed to evaluate the performance of the synthesis model.
The experiments are conducted on a Dell desktop with 32 GM
RAM and 12 CPU cores. The models are trained with a single
NVIDIA TITAN XP GPU with 12GB memory.

A. Experiment I: Case Study on Breast Cancer

Breast cancer is the leading type of cancer in women account-
ing for 25% of all cancer cases worldwide. Full field digital
mammography (FFDM) is the only imaging modality proven
to reduce mortality from breast cancer. However, using FFDM
is not an optimal approach in breast cancer screening due to
its relatively low detection sensitivity in many subgroups of
women, who has high-risk and dense breast [44]. Using dy-
namic contrast-enhanced breast MRI may yield significantly
higher cancer detection sensitivity, but its substantially higher
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Fig. 4. Examples of images in CEDM dataset.

cost, lower accessibility, and longer imaging scanning time for-
bid breast MRI being used as a primary imaging modality in
breast cancer screening and detection [45]. To combine the ad-
vantages of both FFDM and MRI, a new novel imaging modal-
ity namely, contrast-enhanced digital mammography (CEDM)
emerges. CEDM includes low energy (LE) image, which is
comparable to routine FFDM [46] and recombined contrast en-
hanced image similar to breast MRI. Several studies including
prospective clinical trials conducted at Mayo Clinic have indi-
cated that CEDM is a promising imaging modality that over-
comes tissue overlapping (“masking”) which can be seen in
FFDM, provides tumor neovascularity related functional infor-
mation similar to MRI, while maintaining the high image reso-
lution of FFDM [47]–[50]. While promising, as a new modality,
CEDM is not widely available in many medical centers. The
motivation of this study is to explore the application of syn-
thetic imaging to render “virtual” recombined images from the
LE image in hoping to fulfill the clinical needs.

In this experiment, we evaluate the performance of RIED-
Net in mapping the LE images to the recombined images. Since
image synthesis is a relatively new field, two methods from
literature are taken for comparison: Shallow CNN [23] and sCT-
DCNN [27].

1) Dataset: Based on Institutional Review Board (IRB) ap-
proved study and data collection protocol, we reviewed 139
CEDM examinations performed using the Hologic Imaging sys-
tem (Bedford, MA, USA) between August 2014 and December
2015. In CEDM dataset for each subject, there are both LE
and recombined cranial-caudal (CC) and mediolateral-oblique
(MLO) views of each breast. Examples for the images are shown
in Fig. 4.

All images are in 2560(width) × 3328(height) with intensity
ranges from 0 ∼ 4095. Among the dataset, 112 (80%) subjects
were randomly selected as training dataset, the remaining 27
(20%) subjects were used as the test dataset. For each subject,
CC view and MLO view images are treated as two separate
training images, which results in a dataset of 224 (112 × 2)
training images and 54 test images (27 × 2).

2) Image Processing and Training: It is a common approach
to extract patches from images as the training samples to ad-
dress the shortage of training dataset [23], [27]. However, the
size of patches varies case by case. Larger patches require more
memory for calculation, while smaller patches allow the net-
work to see very little context. In the experiment, based on the

preliminary experiments, we set the training patch size to be
128 × 128. After patch size is set, training samples are ex-
tracted from the images in the step size of 8 in each dimension,
and patches outside the breast boundary are excluded. As a
result, a dataset of 65,800 patches are obtained from the 112
training subjects. Among these 65,800 patches, 59,220 (90%)
are used as training samples, and the remaining 6,580 (10%) are
used as validation samples to tune the parameters.

The proposed RIED-Net estimates an end-to-end mapping
from LE images to recombined images. Once we have de-
cided the configuration of the network, the set of parame-
ters Θ = {θi} for RIED-Net should be estimated to build
the mapping function S. The estimation can be achieved by
minimizing the loss F (D; Θ) between the synthetic recom-
bined image and the ground-truth recombined image. Given a
set of paired patches P = {(X1 ,Y1), (X2 ,Y2), . . . , (XK ,YK)}
where {Xi} and {Yi} denote the LE and recombined image
patches respectively, and K is the total number of training sam-
ples. The mean absolute error (MAE) is utilized as the loss
function:

F (D; Θ) =
1
N

N∑

i=1

‖Xi − S(Yi)1‖ (3)

The parameter setting is decided based on the best validation
results. Specifically, the overall architecture is implemented with
programming language Python, and libraries including Keras
and TensorFlow. Adam [51] is used as the optimizer. Learning
rate is set to be 0.002 with learning rate decay equal to 0.005.
Training batch size is set to be 64 and training iteration is set to
be 80. We use the default settings of Keras for all the other pa-
rameters. For the two competing models, the optimal parameters
reported in the literature are used.

3) Comparison: The comparison of performance of the dif-
ferent models is conducted on the reserved test dataset of 54
images. For each image, we slide the 128 × 128 window from
left to right, top to bottom (step size = 2) in LE image, to get the
input patches. The input patches are fed into the trained model,
from which we get the synthetic recombined image patches (128
× 128) as outputs. The output patches are placed at the same
position as their corresponding input patches in the synthetic
recombined images. For the positions with overlapping pixels,
the values are replaced with mean value for all overlapping pix-
els. In this way, the synthetic recombined images are finally
rendered. Our ultimate goal is to synthesize the whole image,
so it is more desirable to evaluate the performance based on the
predicted complete image and its corresponding ground truth
image instead of simply comparing the individual patches. As a
result, to quantify the performance of synthesis for our proposed
model, a set of 54 synthetic recombined images are generated
for each LE image in the test dataset with the trained model.
Each individual synthetic recombined image is then compared
with its corresponding ground truth image using MAE, SSIM,
and PSNR. In terms of each evaluation metric, the mean value
and standard deviation across the 54 pairs of synthetic-ground
truth image are reported. Two state-of-art models (Shallow CNN
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TABLE I
PERFORMANCES OF DIFFERENT MODELS ON THE CEDM TEST DATASET

TABLE II
p-VALUES OF t-TESTS ON PAIRWISE COMPARISION: (A) MAE, (B) SSIM,

(C) PSNR

Fig. 5. Distribution of outperforming cases for MAE, SSIM and PSNR
on CEDM test dataset.

[23] and sCT-DCNN [27]) are implemented for comparison (see
Table I). Also, the paired t-tests are conducted (see Table II).

From the Table I, we have two conclusions. First, shallow
CNN significantly underperforms both sCT-DCNN and our pro-
posed RIED-Net on all three metrics. This confirms our argu-
ment that deep models with more trainable parameters may
outperform shallow networks in the imaging synthesis problem.
Comparing to sCT-DCNN, RIED-Net shows marginal perfor-
mance advantages (11.277 vs. 11.502 in MAE, 0.962 vs. 0.958
in SSIM, 43.450 vs. 43.346 in PSNR). RIED-Net has a small
standard deviation indicating its robust performance. These dif-
ferences may occur by chance and results from few outlier sam-
ples. In order to gain more confidence about the performance
difference, we conducted a paired t-test with results shown in
Table II. According to the results, with all p-values are smaller
than 0.02, we can determine the existence of significant perfor-
mance differences.

To justify the marginal outperformance, we delve in details on
a case by case basis. As seen in Fig. 5, among all the 54 images,

Fig. 6. Sample of one ground truth recombined image (A). Output
synthetic re-combined images of Shallow-CNN (B). SCT-DCNN (C). The
proposed RIED-Net (D).

Fig. 7. Error maps of output images for Shallow-CNN (A). sCT-DCNN
(B). The proposed RIED-Net (C).

our proposed RIED-Net has higher SSIMs (the higher the better)
on 38 images (70.4%), higher PSNRs (the higher the better) on
36 images (66.7%), smaller MAE (the smaller the better) on
39 images (72.2%). In looking at all three metrics together,
RIED-Net outperforms sCT-DCNN on 36 cases (>66.7%).

For illustration, we include one image from each model (see
Fig. 6). Fig. 6A is ground truth recombined image. Fig. 6B, 6C,
and 6D are predicted images of shallow CNN, sCT-DCNN, and
RIED-Net respectively. The error maps for output images are
shown in Fig. 7. Within the error map, the value of a pixel is the
absolute value of difference between the intensities of two pixels
at the same location in ground truth image and synthetic image.
Each value is then divided by the same normalizer (normalizer
value = 15). The values greater than 1 are assigned with 1s. The
aim of this procedure is to normalize the range of difference
map into between 0 and 1, while excluding the effects of outlier
pixels.

First of all, as expected, limited by the learning capability,
there is a very significant gap between the output of the 4-layer
shallow CNN and ground truth images (high MAE values). We
can focus on the comparison between sCT-DCNN and our pro-
posed model. Comparing output images Fig. 6C and 6D, we
can observe that Fig. 6C is coarser within the breast region,
especially in the region close to the boundary, while in Fig. 6D,
these regions are sharper and clearer. This is because, in these
regions, the dense tissue is interlaced with other parts such ves-
sels or fat, the differences among pixels from different parts are
large. sCT-DCNN with max pooling loses the pixel information
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TABLE III
NUMBER OF PARAMETERS WITHIN EACH METHOD

and the unpooling layers fail to restore such information, as
a result, these pixels cannot be differentiated well and tend to
give similar predictions. The advantages of RIED-Net in this
scenario are clearly shown. In looking at the error maps in
Fig. 7(B and C), the red bounding box in Fig. 7B has larger
high-error regions compared to Fig. 7C. This may be because in
sCT-DCNN, during the prediction, if a single pixel is estimated
with high error, it will first affect its 3 neighboring pixels after
unpooling layers, and this effect tends to expand to more pixels
after more unpooling layers. In RIED-Net, the succeeding pix-
els after deconvolutional layers depend not only on that specific
preceding pixel, but also on the trainable parameters within the
deconvolutional layers. In this way, even if a pixel is estimated
with high error, this results in its following neighboring pixels
to be relieved through the deconvolutional layer, thus the region
of high-error in Fig. 7C tends to be small and in isolated re-
gions. We conclude RIED-Net has promising potential for the
imaging synthesis problem in breast cancer research on digital
mammography (DM) modality.

The details of number of parameters required by each of
the approaches are shown in Table III. There are a total of
12,247,233 trainable parameters within the proposed model.
Among the 12,247,233 parameters, 25% (3,052,960) are within
the convolution and deconvolution layers for resolution change
while reserving pixel information; 3% (348,192) are within the
residual inception shortcut; the remaining 72% (8,846,081) pa-
rameters are within the main encoding and decoding path for
feature generation. Our proposed method adopts comparable
number of parameters as sCT-DCNN in the main encoding and
decoding path. Most extra parameters (∼90%) are mainly used
to reserve pixel information when changing the feature map res-
olution and a small portion (∼10%) are used to in the inception
residual shortcut for further performance improvement.

For the proposed model, the total training time (80 iterations)
is 25,360 seconds. The average time to generate a synthetic im-
age is 5.2 seconds. The time for training\generating a synthetic
image for the sCT-DCNN and Shallow-CNN are 20,081/4.5 and
1,600/0.4 seconds respectively. Shallow-CNN has the fastest
training and prediction time as it has the least parameters. The
sCT-DCNN has less parameter than our proposed RIED-Net, its
training process is faster (20.8%). However, once the model is
trained, the gap of prediction time is narrowed to 13.4%.

Next, we will explore its applicability to an Alzheimer disease
dataset across two imaging modalities: FDG-PET and MRI.

B. Experiment II: Case Study on Alzheimer’s Disease

Alzheimer’s disease (AD) is a progressive neurodegenerative
disease which is the most frequent type among elderly demen-
tia patients. In the U.S., approximately 5.5 million people over

Fig. 8. Examples of MRI slices (A/C/E) in ADNI dataset and their cor-
responding FDG-PET images (B/D/F).

65 are afflicted by AD (Alzheimer’s Association, 2018). This
drives a great amount of research investigating ways for the
diagnosis and prognosis of AD. And the use of imaging has
been highlighted by multiple expert consensus groups nation-
ally and internationally, such as the working group convened
by National Institute of Aging (NIA) and the Alzheimer’s As-
sociation (AA) and the International Working Group [52]. It
has been widely-recognized that imaging of different modali-
ties, including but not limited to structural MRI, FDG-PET, and
amyloid-PET, play important and often complementary roles.
However, it is difficult for a single modality to serve all the
purposes as each modality has unique strength and weakness.
Combining different imaging modalities is vitally important to
make accurate and early diagnosis and prognosis, a prerequi-
site to develop effective disease-modifying therapies. However,
patients may not have all imaging modalities available due to
various reasons. In this experiment, the proposed architecture
is to learn the non-linear mapping between FDG-PET images
and MRI images. It will be trained to render synthetic FDG-PET
images given MRI images as input. Its performance is compared
with the same two competing methods used in experiment I.

1) Dataset: The ADNI is launched aiming at finding the re-
lationship between progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD) and biomarkers,
MRI, PET or clinical and neuropsychological assessments.
ADNI enrolls a large cohort (>800) of participants [53], PET,
MRI images, as well as clinical information are available. In
this experiment, 14 subjects are downloaded and used in the
experiment. Detailed information for ADNI dataset is as fol-
lowing: MRI (before co-registration: 256 × 256 × 170, af-
ter co- registration: 79/79/91, intensity 0 ∼ 255), FDG-PET
(before co-registration: 128 × 128 × 90, after co-registration:
79 × 79 × 91, intensity: 0 ∼ 255). Three sample images from
different slices are shown in Fig. 8.

2) Image Processing: The MRI and FDG-PET images are
firstly spatially normalized into a same template space to make
them rigidly aligned with each other. This process is known as
image co-registration, which is conducted through a MATLAB
based library named Statistical Parametric Mapping (SPM 12
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). After co-
registration, the size of FDG-PET and MRI become 79 × 79 ×
91 (limited by the resolution of atlas used in SPM 12). In this
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TABLE IV
PERFORMANCES OF DIFFERENT MODELS ON THE ADNI TEST DATASET

TABLE V
p-VALUES OF t-TESTS ON PAIRWISE COMPARISONS: (A) MAE, (B) SSIM, (C)

PSNR

experiment, based on the preliminary experiment results, we set
the input and output patches to be 64 × 64. Training samples
are extracted from each slice of the 3D image of each subject,
to exclude slices with poor quality and limited brain regions,
slice 1 ∼ 10 and slice 82 ∼ 91 are excluded. As a result, for
each subject, 70 slices are extracted. Patches of size 64 × 64 are
extracted at step size of 4 in each dimension and 3479 training
patches are obtained from each training subject. In the second
experiment, the parameter settings for the 3 models are the same
as experiment I.

3) Comparison: For the proposed model, the total training
time (80 iterations) is 6,321 seconds. The average time to gen-
erate a synthetic 3D PET image is 3.6 seconds. The training
time/prediction time (one 3D synthetic PET image) for the sCT-
DCNN and Shallow-CNN are 5,267/2.9 and 395/0.4 seconds
respectively. Shallow-CNN has the fastest training and predic-
tion time as it has the least parameters. The sCT-DCNN has less
parameter than our proposed RIED-Net, its training process is
faster (16.7%). However, once the model is trained, the gap in
prediction time 24.1%.

Given the relatively small dataset we have in this experi-
ment, the comparison of performance for different models is
conducted based on the leave-one-out cross validation. Within
each fold, all the other settings and procedure are the same as
experiment I. Specifically, performance metric for each subject
is calculated based on the average value across all slices. The
final metric value is averaged across all 14 subjects and reported
in Table IV and paired t-test results are summarized in Table V.
From these two tables, we can conclude that significant perfor-
mance differences still exist in experiment II.

Similar to the first experiment, we conclude shallow CNN
underperforms sCT-DCNN and RIED-Net, and RIED-Net sig-
nificantly outperforms sCT-DCNN in terms of all the three

Fig. 9. Sample of one ground truth FDG-PET image (A). Output syn-
thetic FDG-PET images of Shallow-CNN (B). sCT-DCNN(C). Our pro-
posed RIED-Net (D).

Fig. 10. Error maps of output images for Shallow-CNN (A). sCT-DCNN
(B). Our proposed RIED-Net (C).

metrics. Among the 14 test cases, RIED-Net has higher SSIM
and PSNRs on 11 (79%) and 12 (86%) test subjects respectively,
lower MAEs on 12 images (86%). From Table IV, we can see
that the improvements on MAE and PSNR is relatively signifi-
cant (14% and 7%) compared with SSIM (2%). This is because
MAE and PSNR are closely related to the pixel wised intensity
difference; our method is proposed for better training/prediction
performance and trained to get the minimal intensity wised dif-
ference between input and output images. On the other hand,
SSIM is widely used to measure the perceptual quality, which
considers the regional intensity mean and variation. The reduced
pixel wised intensity difference does help marginally improve
the perceptual quality of synthetic images.

Fig. 9 is the illustrative figure showing one image from each
of the three models with Fig. 9A is ground truth FDG-PET
image, Fig. 9B, 10C and 10D are output images of shallow
CNN, sCT-DCNN and RIED-Net. In Fig. 10, A, B, and C are
the error maps for the outputs from 3 models. The error maps
are generated through the same procedure as experiment I.

As seen in Fig. 9, the output of shallow CNN (Fig. 9B) roughly
restores the layout of ground true FDG-PET image (Fig. 9A)
while with significant errors in details (Fig. 10A). In the error
maps in Fig. 10, we can locate several regions where sCT-DCNN
have higher errors in a larger area, for example, the two regions
highlighted with the red bounding box in Fig. 10B, while RIED-
Net shows lower errors in a smaller area in the same locations.
If we map these regions back to the ground truth PET image, we
can find that these regions have higher contrast, which means
they are functioning more than surrounding regions and are
more important for clinical use and interpretation. However,
within such region, after several rounds of max pooling, only
the pixels with peak intensities are kept; its neighboring pixels,
though also have a relatively high intensity, are excluded. The
excluded information is very difficult to reconstruct from the
decoding path. As a result, the region with higher error tends
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to expand. On the other hand, our proposed algorithm reserved
some information for the peak point as well as its surrounding
regions; the information helps the model get a better prediction
for the surrounding regions. From the figure, we conclude RIED-
Net has satisfying performance on synthesizing images across
modalities.

V. DISCUSSION AND CONCLUSION

Image synthesis is becoming an important field in medical
imaging research. Particularly so in scenarios where some image
modalities may not be available due to accessibility/costs, radi-
ation exposure, or need for intravenous contrast agent. To date,
CNNs have shown the promise in medical imaging research
mostly in imaging classification, detection, and segmentation.
In this study, we propose a novel residual inception encoding-
decoding network (RIED-Net) to address and enable image syn-
thesis. There are two main contributions. First, the convolutional
layers are introduced to reserve pixel information during the en-
coding process when the feature map size is reduced to increase
receptive field size; deconvolutional layers are implemented to
restore pixel information within the decoding process. Second,
residual inception shortcut block is designed to address the gra-
dient vanishing issues and improve the prediction accuracy. The
performance of our proposed architecture is evaluated in two
disparate imaging datasets. Comparison experiments confirm
the outperformance of the proposed network model.

While promising, there is room for future work. For example,
we do observe in Fig. 6 and Fig. 7 from the breast cancer
study, all the models perform poorly on small regions of interest
(e.g., suspicious tumor), as the ROI region is relatively small
compared with the whole breast resulting in the models failing
to train properly for small tumors. Future plans are to specifically
study lesions <1 cm in size and train the model with this select
cohort to improve performance.
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